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Abstract
Given the functional interdependencies between the molecular components in a human cell, a
disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of
the complex intracellular network. The emerging tools of network medicine offer a platform to
explore systematically not only the molecular complexity of a particular disease, leading to the
identification of disease modules and pathways, but also the molecular relationships between
apparently distinct (patho)phenotypes. Advances in this direction are essential to identify new
diseases genes, to uncover the biological significance of disease-associated mutations identified by
genome-wide association studies and full genome sequencing, and to identify drug targets and
biomarkers for complex diseases.

Introduction
In humans, as in other organisms, most cellular components exert their functions through
interactions with other cellular components, the totality of these interactions representing the
human interactome. The potential complexity of this network is daunting: with
approximately 25,000 protein-encoding genes, about a thousand metabolites, and an as yet
undefined number of distinct proteins (splice variants and more than 300 different post-
translationally modified forms1) and functional RNA molecules, the distinct cellular
components that serve as the nodes of the interactome easily exceed one hundred thousand.
The number of functionally relevant interactions between the components of this network,
representing the links of the interactome, is expected to be much larger and remains largely
unknown2.

This subcellular interconnectivity implies that the impact of a specific genetic abnormality is
not restricted to the activity of the gene product that carries it, but can spread along the links
of the network, and alter the activity of gene products that otherwise carry no defects.
Therefore, the phenotypic impact of a defect3 is not determined solely by the known
function of the mutated gene, but also by the functions of components with which the gene
and its products interact and of their interaction partners, i.e., by its network context.
Following on this principle, a key hypothesis underlying this review is that a disease is
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rarely a consequence of an abnormality in a single effector gene product. Instead, the disease
phenotype is a reflection of various pathobiological processes that interact in a complex
network. A corollary of this hypothesis is that the interdependencies among a cell’s
molecular components lead to deep functional, molecular, and causal relationships among
apparently distinct phenotypes.

Network-based approaches to human disease can have multiple biological and clinical
applications. Indeed, a better understanding of the implications of cellular
interconnectedness on disease progression could lead to identification of disease genes and
disease pathways, which, in turn, could offer better targets for drug development. These
advances could also reshape clinical practice, from the discovery of better and more accurate
biomarkers monitoring the functional integrity of the network perturbed by the diseases, to
better disease classification, paving the way to personalized therapies and treatment. Our
aim here is to present an overview of the organizing principles that govern cellular networks
and their role in disease. Indeed, these organizing principles, and the tools and
methodologies derived from them, are facilitating the emergence of a body of knowledge
that is increasingly referred to as network medicine4–6, offering a quantitative platform to
address the complexity of human disease.

The human interactome
Owing to the conservation of biochemical and molecular functions across species, much of
our current understanding of cellular networks is derived from model organisms. Yet, in the
past decade we witnessed an exceptional growth in human-specific molecular interaction
data, helping us understand the interlocking networks that play a key role in human disease7.
Most attention is focused on molecular networks, including: protein interaction networks,
whose nodes are proteins linked to each other via physical (binding) interactions8, 9;
metabolic networks, whose nodes are metabolites linked if they participate in the same
biochemical reactions10–12; regulatory networks, whose directed links represent regulatory
relationships between a transcription factor and a gene13, or post-translational modifications,
such as those between a kinase and its substrates14; and RNA networks, capturing the role of
RNA-DNA interactions such as small non-coding microRNAs15 and siRNAs16 in regulating
gene expression. In parallel, an increasing number of studies rely on phenotypic networks
that include: co-expression networks, in which genes with similar co-expression patterns are
linked17; and genetic networks, in which two genes are linked if the phenotype of a double
mutant differs from the expected phenotype of two single mutants18, 19. Typically the links
of a phenotypic network reflect some pathways in the underlying molecular networks. For
example, in yeast, the protein products of gene pairs that display positive genetic
interactions often interact directly with each other19.

While current human interactome maps are incomplete and noisy, in the past few years we
have witnessed systematic efforts to increase their coverage and accuracy, as well as to
estimate the interactome size and correct for known biases2, 20, 21. Yet, in exploring the
interplay between networks and human diseases, we first need to assess how comprehensive
and accurate the current molecular and phenotypic network maps are, an issue addressed in
Box 1.

Properties of disease networks
Network medicine relies on a series of advances in network theory22–27, which have
provided insights into the properties of biological networks more generally. These studies
have indicated that networks emerging in biological, technological, or social systems are not
random, but are characterized by a core set of organizing principles, as summarized in Box
2. Understanding diseases in the context of these network principles allows us to answer
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some fundamental properties of the genes that are involved in disease. Indeed, only about
10% of human genes have a known disease-association28 (Fig. 1a), forcing one to ask: do
disease genes have unique, quantifiable characteristics that distinguish them from other,
non-disease genes? From a network perspective, this question translates into the following:
if we consider the corpus of all known disease genes, are they placed randomly on the
interactome, or are there detectable correlations between their location and network
topology?

Location of disease genes within networks
An unexpected property of biological networks is the emergence of hub proteins (Box 2),
suggesting that hubs must play a special biological role. Indeed, evidence from model
organisms indicates that hub proteins tend to be encoded by essential genes29, and that genes
encoding hubs are older and evolve more slowly than genes encoding non-hub proteins30–32.
The deletion of genes encoding hubs also leads to a larger number of phenotypic outcomes
than the deletion of genes encoding less connected proteins21. While the strength of
evidence for some of these effects is still debated21, 33, by virtue of the many interactions
they have, one expects that the absence of a hub would affect the function of an exceptional
number of other proteins. This assumption has led to the hypothesis that, in humans, hubs
should typically be associated with disease genes. Indeed, the protein products of up-
regulated genes in lung squamous cell carcinoma tend to have a high degree of
connectivity34 and 346 proteins implicated in cancer have, on average, twice as many
interaction partners as non-cancer proteins35. Moving beyond cancer, one study found that
disease proteins in the OMIM Morbid Map28 have more protein-protein interactions than
non-disease proteins in a literature-curated protein-protein interaction datase36.

Note, however, that the essential gene concept in simple organisms does not map uniquely
into disease genes in humans. Indeed, some human genes are essential in early development,
so functional changes in them often lead to first-trimester spontaneous abortions (embryonic
lethality). Mutations in such ‘essential’ genes cannot propagate in the population, as
individuals carrying them cannot reproduce. In contrast, individuals can tolerate for a long
time the disease-causing mutations, often past their reproductive age. The question is, are
both (disease and essential) genes associated with hubs? Goh et al37 found that essential
genes show a strong tendency to be associated with hubs and expressed in multiple tissues,
i.e., they tend to be located at the functional center of the interactome (Fig. 1). Yet, in
contrast with our initial hypothesis, non-essential disease genes do not show a tendency to
encode hubs and tend to be tissue-specific. That is, from a network perspective, these genes
segregate at the functional periphery of the interactome (Fig. 1b). In summary, in human
cells it is the essential genes, and not the disease genes, that are encoding hubs. This
difference can be understood from an evolutionary perspective: mutations that disrupt hubs
have difficulty propagating in the population, as the absence of hubs create so many
disruptions that the host may not survive long enough to reproduce. Thus, only mutations
that impair functionally or topologically peripheral genes can persist, accounting for the
family of heritable diseases, especially those that appear in adulthood.

Local clustering of disease genes – disease modules
If a gene or molecule is involved in a specific biochemical process or disease, its direct
interactors might also be suspected to play some role in the same biochemical process. In
line with this “local” hypothesis (Box 3), proteins involved in the same disease show a high
propensity to interact with each other37, 38. For example, Goh et al.37 observed 290 physical
interactions between the products of genes associated with the same disorder, representing a
10-fold increase relative to random expectation (P < 10−6). Furthermore, Gandhi et al.39 and
Xu and Li36 found that genes linked to diseases with similar phenotypes have a significantly
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increased tendency to interact directly with each other. These observations indicate that if
we identify a few disease components, the other disease-related components will likely be in
their network-based vicinity. That is, we expect that each disease can be linked to a well-
defined neighborhood of the interactome, often referred to as a disease module.

As we try to understand the network-based position of disease genes, we need to distinguish
among three distinct phenomena (Fig. 2). A topological module represents a locally dense
neighborhood in a network, such that nodes have a higher tendency to link to nodes within
the same local neighborhood than to nodes outside of it. It can be identified using various
network clustering algorithms40–43 that are blind to the function of individual nodes. By
contrast, a functional module represents the aggregation of nodes of similar or related
function in the same network neighborhood. Finally, a disease module represents a group of
network components that together contribute to a cellular function whose disruption results
in a particular disease phenotype.

In the biological literature, there is a tacit assumption that these three concepts are
interrelated: cellular components that form a topological module have closely related
functions, thus corresponding to a functional module; and a disease is a result of the
breakdown of a particular functional module, intimating that a functional module is also a
disease module. However, several unique characteristics of disease modules are important to
bear in mind. First, a disease module may not be identical to, but likely overlaps with, the
topological and/or functional modules. Second, a disease module is defined in relation to a
particular disease, and, accordingly, each disease has its own unique module. Finally, a
gene, protein, or metabolite can be implicated in several disease modules, which means that
different disease modules can overlap.

The disease module hypothesis represents a network-level expansion of the disease gene
hypothesis. The emergence of a disease is viewed as a combinatorial problem in which
many different defects and perturbations result in a similar disease phenotype, provided they
alter the activity of the disease module. Such combinatorial disease mechanisms are well
documented in cancer44, but the utility of the disease module hypothesis extends beyond
polygenic diseases, and is important even in some monogenic diseases. For example, sickle
cell disease, a classic Mendelian disorder, is caused by a single point mutation at position 6
of the beta-chain of hemoglobin. Yet, this simple biochemical phenotype and its
corresponding monogenotype do not yield a single pathophenotype: individuals with sickle
cell disease can present with painful crises, osteonecrosis, acute chest syndrome, stroke,
profound anemia, or mild asymptomatic anemia. Thus, the underlying disease module will
likely include all disease modifying genes (e.g., hemoglobin F) that mediate various
epigenetic, transcriptional, and post-translational phenomena. An important step of network-
based approaches to disease is, therefore, to identify the disease module for the
pathophenotype of interest, which, in turn, can guide further experimental work and
influence drug development.

Identifying disease modules
Bioinformatics approaches

Disease modules can be identified on the basis of currently available data using
bioinformatics approaches, whose main steps are described in Figure 3. Variants of this
methodology have been applied to a wide range of diseases and pathophenotypes, from
cardiovascular disease to various forms of cancer. For example, Taylor et al.45 studied the
dynamic modular structure of the protein interaction network in adenocarcinoma of the
breast, finding that hub proteins that displayed altered modularity in the human interactome
were useful indicators for predicting breast cancer outcome. Similarly, Chen et al.46 relied

Barabási et al. Page 4

Nat Rev Genet. Author manuscript; available in PMC 2011 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



on co-expression networks constructed from liver and adipose tissues, facilitating the
identification of sub-networks associated with genetic loci linked to obesity- and diabetes-
related DNA variations. The results confirmed the connection between obesity and a
macrophage-enriched metabolic subnetwork, validating three previously unknown genes,
LPL, LACTB, and PPM1L, as obesity genes in transgenic mice. An extensive list of diseases
to which the disease module has been identified, with the pertinent references, can be found
in Table I online.

The disease module-based approach is useful in exploring pathogen-induced phenotypes, as
well. Pathogens often disrupt the cell’s normal activity by interacting with and transferring
their genes or proteins to the host cell; thus, a thorough understanding of this process
requires a map of the interactions between the molecular components of the virus and the
host cell47, 48. A recent study has shown that the array of diseases associated with Epstein-
Barr virus and human papillomavirus are linked to genes whose protein products lie in
topological proximity to the viral target proteins49, leading to the identification of the viral
disease module. In light of these advances, an area ripe for network-based approaches is the
bacterial microbiome (and other metagenomes) and its relationship to human disease50.

Experimental mapping of disease modules
Often the rate-limiting step in mapping a disease module is the small coverage of the
available cellular interaction maps in the vicinity of the known disease components,
requiring additional experimental efforts to identify relevant interactions. This approach was
successfully applied to several diseases, including Huntington disease51, spinocerebellar
ataxia52, breast cancer53, and schizophrenia54. For example, starting from 23 known ataxia-
causing genes, Lim et al.52 used yeast two-hybrid assays to map out their interactions with
other human proteins; the interactions of this second group of proteins were then used to
build a dense subnetwork two degrees removed from the known ataxia genes. A member of
the predicted ataxia disease module, puratrophin-1, a common binding partner to many of
the known ataxia genes, which were not previously recognized as having any commonality,
was later shown to lead to ataxia-like phenotypes in mice upon its deletion55.

Predicting disease genes
Traditionally, disease-associated genes were discovered by linking genomic intervals
containing hundreds of genes to a particular phenotype, or, more recently, with genome-
wide association studies (GWAS)56, identifying SNPs that have a statistically significant
correlation with the disease. Both methodologies can offer a large number of disease-gene
candidates, but identifying the particular gene and the mutation that is causal to the disease
remains a difficult undertaking. Recently, a series of increasingly sophisticated network-
based tools have been developed to predict potential disease genes, integrating in the
network context knowledge about a particular disease, whether it derives from GWAS, full-
genome sequencing, linkage methods, or individual studies. The existing tools can be
loosely grouped into three categories (Fig. 4):

A. Linkage methods assume that the direct interaction partners of a disease protein are
likely candidates to be associated with the same disease phenotype38, 57, 58. Indeed,
Oti et al.38 showed that the set of genes that fell within one of the known disease
loci and whose products interacted with a known disease protein were 10-fold
enriched in true disease-causing genes; and by considering cellular localization as
well, the network information lead to a 1000-fold enrichment over a random
selection. Using this feature, they predicted (and confirmed using independent data)
that Janus kinase 3 (JAK3) was a candidate protein for severe combined
immunodeficiency syndrome, due to its interaction with lymphocyte specific
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protein-tyrosine (LCK), protein-tyrosine phosphatase (PTPRC), and interleukin 2
receptor (IL2RG), known disease-associated proteins.

B. Modularity or pathway-based methods assume that all cellular components that
belong to the same topological/functional/disease module have a high likelihood of
being involved in the same disease59, 60. Thus these methods start with identifying
the disease modules (Fig 3), and inspecting their members as potential disease
genes. For example, Wu et al.61 showed that many of the recently identified breast
cancer susceptibility genes were ranked highly by an algorithm which took
advantage of the positive correlation between modularity in the protein interaction
network and phenotype-phenotype similarity network.

C. Diffusion-based methods aim to identify the pathways that are closest to the known
disease genes. By releasing hypothetical random walkers from the protein products
of the known disease genes, that are then allowed to diffuse along the links of the
interactome (moving to any neighboring node with equal probability), one can
identify the nodes and links that are closest to the known disease genes, as they will
be those most often visited by the random walkers during their random walks.
Proteins that interact with several disease proteins will gain a high probabilistic
weight, as will those that may not directly interact with any disease proteins but are
in close network proximity thereto, helping prioritize proteins and interactions
based on their potential involvement in the particular disease. Variants of this
methodology have been applied to detect disease genes related to a wide range of
diseases, from diabetes mellitus to prostate cancer and Alzheimer disease62, 63.

These methodologies (A–C) exploit to an increasing degree the topological and functional
information encoded by the interactome. Method A involves only pair-wise linkage
information (local hypothesis, Box 3), while the modularity-based method (B) exploits the
full network neighborhood of disease genes (disease module hypothesis, Box 3). Finally,
diffusion-based methods (C) use the information encoded in the full network topology and
the placement of the known disease genes, thereby simultaneously exploiting both
topological and functional modularity (together with the parsimony principle, Box 3). It is
not surprising, therefore, that a recent comparative study found, that, on the same dataset,
linkage-based methods have the least predictive power and that diffusion-based methods
offer the best predictive performance59.

Human Diseasome
The highly interconnected nature of the interactome means that at the molecular level, it is
difficult, if not counter-intuitive, to consider diseases as being invariably independent of one
another. Indeed, different disease modules can overlap, so that perturbations caused by one
disease can affect other disease modules. The systematic mapping of such network-based
dependencies between the pathophenotypes and their disease modules has culminated in the
concept of the diseasome37, representing disease maps whose nodes are diseases and whose
links represent various molecular relationships between the disease-associated cellular
components. Uncovering such links between diseases not only helps us understand how
different phenotypes, often addressed by different medical sub-disciplines, are linked at the
molecular level, but can also help us comprehend why certain groups of diseases arise
together. The co-morbidity of conditions culled from the diseasome offers insights that may
yield novel approaches to disease prevention, diagnosis, and treatment. Diseasome-based
approaches could also aid drug discovery, in particular when it comes to the use of approved
drugs to treat molecularly linked diseases. Next, we review the construction of such disease
maps and the consequences of the observed disease associations.
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Shared Gene Hypothesis and the Human Diseasome Network (HDN)
If the same gene is linked to two different disease pathophenotypes, this linkage is often an
indication that the two diseases have a common genetic origin. Motivated by this hypothesis,
Goh et al.37 used the gene-disease associations collected in the OMIM database to build a
network of diseases that are linked if they share one or several genes. In the obtained HDN,
867 of 1,284 diseases with an associated gene are connected to at least one other disease,
and 516 of them belong to a single disease cluster (Fig. 5). The clustering of nodes of similar
color in Figure 5, denoting the disease class, reflects the fact that similar pathophenotypes
have a higher likelihood of sharing genes than pathophenotypes that belong to different
disease classes. For example, cancers form a tightly interconnected and easily detectable
cluster, held together by a small group of genes associated with multiple cancers, such as
P53, KRAS, ERBB2 or NF1.

To test if the shared gene relationship has epidemiological consequences in disease
occurrence in the population64, we show the comorbidity between linked disease pairs in
Figure 5. This analysis indicates that a patient is twice as likely to develop a (comorbid)
disease if that disease shares a gene with the primary disease than if that disease does not
share a gene with the primary disease. Yet, many disease pairs that share genes do not show
significant comorbidity. This lack of comorbidity may occur, in part, because different
mutations on the same gene can have different effects on the function of the gene product
and on its organ-based expression, therefore, different pathological consequences65 that are
context-dependent. Such ‘edgetic’ alleles affect a specific subset of links in the
interactome66, and individuals who harbor different mutations in the same gene can develop
different disorders. Consistent with this view, disease pairs associated with mutations that
affect the same functional domain of a protein show higher comorbidity than disease pairs
whose mutations occur in different functional domains64 (Fig. 5).

Shared metabolic pathway hypothesis and the Metabolic Disease Network (MDN)
An enzymatic defect that affects the flux of one reaction may potentially affect the fluxes of
all downstream reactions in the same pathway, leading to disease phenotypes that are
normally associated with these downstream reactions. Thus, for metabolic diseases, links
induced by shared metabolic pathways are expected to be more relevant than the links based
on shared genes. In support of this hypothesis, Lee et al.67 constructed a metabolic disease
network in which two disorders are connected if the enzymes associated with them catalyze
adjacent reactions (Fig. 5). The visually apparent clustering of the MDN mirrors distinct
metabolic pathways. For example, purine metabolism consists of 62 reactions associated
with 33 diseases, including nucleoside phosphorylase deficiency and congenital
dyserythropoietic anemia. These diseases form a visually distinct cluster, highlighted with
blue shading in Figure 5. Comorbidity analysis confirms the functional relevance of
metabolic coupling: disease pairs linked in the MDN have a 1.8-fold increased comorbidity
compared to disease pairs that are not linked metabolically67. Comorbidity is even more
pronounced if the fluxes of the reactions catalyzed by the respective disease genes are
themselves coupled, i.e., changes in one flux induce significant changes in the other flux,
even if the corresponding reactions are not adjacent.

Shared microRNA hypothesis
Prompted by the increasing evidence of the role of miRNAs in human disease, Lu et al.68

connected diseases pairs whose associated genes are targeted by at least one common
miRNA molecule. The obtained network displays a disease class-based segregation: for
example, cancers share similar associations at the miRNA level, leading to a distinct cancer
cluster, which, for example, differs from the cluster associated with cardiovascular diseases,
in the miRNA-based disease network.

Barabási et al. Page 7

Nat Rev Genet. Author manuscript; available in PMC 2011 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Phenotypic Disease Network (PDNs)
One can also link disease pairs based on the directly observed comorbidity between them,
obtaining a phenotypic disease network. For example, Rzhetsky et al.69 inferred the
comorbidity links between 161 disorders from the disease history of 1.5 million patients at
the Columbia University Medical Center, and Hidalgo et al.70 built a network involving 657
diseases from the disease history of over 30 million Medicare patients. In these maps, two
diseases are connected if their comorbidity exceeds a predefined threshold. The PDN is
blind to the mechanism underlying the observed comorbidity, which may be rooted in
molecular-level dependencies (as seen for HDN, MDN or mi-RNA based disease networks),
or in environmental or treatment-related perturbations of the network. Yet, PDN captures
disease progression, as patients tend to develop diseases in the network vicinity of diseases
they have already had70. Furthermore, patients who are diagnosed with diseases with more
links in the PDN show a higher mortality than those diagnosed with less connected
diseases70. Another use of phenotypic information to build a disease network was suggested
by Van Driel et al.71, who employed text mining to assign to over 5,000 human phenotypes
in the OMIM database a string of phenotypic features from the medical subject heading
vocabulary. The overlap of their phenotypic descriptions was used to link various diseases,
finding that phenotypic similarity positively correlates with the molecular signatures of two
linked diseases, from relatedness at the level of protein sequence to protein motifs and direct
protein–protein interactions between the disease-associated proteins.

These studies indicate that the molecular-level links between the known disease components
have direct epidemiological consequences, leading to observable comorbidity patterns.
While most efforts focused on the role of single molecular or phenotypic measure to capture
disease-disease relationships (such as shared genes or metabolites), a comprehensive
understanding requires us to inspect multiple sources of evidence, from shared genes to
protein-protein interaction based relationships, shared environmental factors, common
treatments, affected tissues and organs, and phenotypic manifestations. In line with such
integrated approaches, Suthram et al.72 built a disease network by linking two diseases for
which the same modules were activated in the specific disease states and Liu et al.73 linked
diseases with common environmental influences. While a comprehensive program towards
understanding all causal links between diseases is still in its infancy, it will be essential if we
seek a deeper understanding of human disease.

Applying network-based knowledge of disease
Network pharmacology

Owing to the often unknown interactions between drug targets and other cellular
components, drugs whose efficacy was predicted by specific target-binding experiments
may not have the same effect in different clinical settings in which that target is of modified
contextual importance (e.g., tissue-specific isoform compensates for the loss of function of
the inhibited protein). Furthermore, single-target drugs may, perhaps, correct some
dysfunctional aspects of the disease module, but could alter the activity of other network
neighborhoods, leading to detectable side effects. This network-based view of drug action
implies that most disease phenotypes are difficult to reverse through the use of a single
‘magic bullet,’ i.e., an intervention that affects a single node in the network74. While
network-based approaches represent a relatively recent trend in drug discovery, given the
intricate network effects drug development must face, the nascent field of network
pharmacology75, at the intersection of network medicine and polypharmacology, is poised to
become an essential component of drug development strategies.

The utility of network-based approaches in drug discovery has been demonstrated in the
search for antibiotic targets against bacterial metabolism. Given the relatively accurate
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metabolic maps (see Box 1), and that in bacteria flux balance analysis76 and other flux-
based methods77 allow the prediction of the flux changes induced by drug-altered enzymatic
activity, the metabolic impact of a hypothetical enzyme-blocking drug can be explicitly
explored. This process has recently led to the identification and testing of potential new
antibacterial targets78. Furthermore, the coupled nature of metabolic fluxes allows for the
possibility of rescuing a lost metabolic function through the blocking of additional enzymes,
selected to re-route metabolic activity to compensate for the original loss of function, an
intriguing alternative to gene therapy79.

There is increasing attention paid to therapies involving multiple targets that may be
potentially more effective in reversing the disease phenotype than single drugs80. The
efficacy of this approach has been demonstrated by combinatorial therapies of AIDS,
cancer, or depression, raising an important question: can one systematically identify multiple
drug targets with optimal impact on the disease phenotype? This is an archetypical network
problem, leading to methods to identify optimal drug combinations starting either from the
metabolic network81, 82, or from the bipartite network linking compounds to their drug-
response phenotypes83. Research in this direction has led to potentially safer multi-target
combinations for inflammatory conditions, or to the identification of 14 optimal anti-cancer
drug combinations81–83.

Equally important, drug-target networks84, 85 that link approved or experimental drugs to
their protein targets have helped organize the considerable knowledge base encoding the
interplay between diseases and drugs. Its analysis demonstrated the preponderance of
palliative drugs, i.e., drugs that do not target the actual source of the disease (i.e., the
disease-associated proteins) but proteins in the network neighborhood84 of the disease
proteins.

The first step of rational drug design is an understanding of the cellular dysfunction caused
by a disease. By definition, this dysfunction is limited to the disease module, which means
that one can reduce the search for therapeutic agents to those that induce detectable changes
in the particular disease module. This represents a significant reduction of the search space,
also aiding the development of biomarkers for disease detection, as changes in the activity of
the disease module components are expected to show the strongest correlations with disease
progression86.

Disease classification
Contemporary approaches to the classification of human disease are based on observational
correlations between pathological analysis and existing knowledge of clinical syndromes.
Yet, modern molecular diagnostic tools have shown the shortcomings of this methodology,
reflecting both a lack of sensitivity in identifying preclinical disease and a lack of specificity
in defining disease unequivocally. For example, hypertrophic cardiomyopathy, an inherited
form of heart failure, is caused by a number of mutations in a variety of sarcomeric proteins;
however, the clinical phenotype, as well as the anatomic and functional pathophenotypes
(via echocardiographic assessment) are essentially indistinguishable from one another87, 88.
Similarly, the classification of lymphomas, which has largely relied on histopathology and
cell surface marker panels, is recently evolving to molecular-level classification that relies
on expression arrays and genomic analysis89, as well as systems approaches90. As a result of
this movement toward network-based classification of lymphomas, prognosis can be
individualized91 and the promise of individualized therapies more likely to be realized.

Current disease classification, in general, tends to neglect the interconnected nature of many
diseases. This failure is partly a response to the focused nature of medical training, as well
as the reductionist paradigm that has driven medical diagnosis in the modern era. In an effort
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to correct this shortcoming, we recently proposed a systems-based network framework for
defining human disease92. In this paradigm, the clinical pathophenotype is the systems-
driven consequence of a series of linked networks that incorporate the primary disease-
causing gene (e.g., the sickle hemoglobin mutation in the 6th position of the beta-chain
gene), disease modifying genes (including those that control common (generic) intermediate
pathophenotypes (endopathophenotypes) common to all disease (i.e., inflammation,
thrombosis/ hemorrhage, fibrosis, immune response, cell proliferation, apoptosis/necrosis)
and their network-based determinants, and environmental (and behavioral) determinants
(including those that lead modulate gene expression at the transcriptional or epigenetic
levels, as well as those that cause post-translational modification of the proteome) and their
influence on the functional genome. These subnetwork determinants of the disease network
conspire to yield the clinical phenotype in highly individualized ways for simple as well as
complex illness92. Clearly, network-based approaches to disease have the potential,
therefore, to provide a new and useful framework for classifying disease, defining disease
susceptibility, predicting disease outcome, and identifying tailored therapeutic strategies.

Conclusions
In summary, similar to an automotive technician’s inability to fix a car’s electrical problem
without an accurate assembly and wiring diagram, a comprehensive understanding of most
diseases requires a map of the cell’s intricate wiring diagram, whose breakdown is
ultimately responsible for the emergence of a particular disease phenotype. Network
medicine seeks to offer this understanding, teaching us that the road towards a reliable
network-based approach to disease is currently limited by the incompleteness of the
available interactome maps and the limitations of the existing tools to explore the role of
networks in disease. For example, investigators are forced to apply traditional statistical
tools to network data, assuming that the quantities of interest follow a normal distribution
(which they do not—everything from degree distributions to metabolite concentrations are
known to be fat tailed), or that the deterministic parameters are independent variables
(which, again, they are not—most activity patterns in the cell are correlated). Thus, there is a
real need to develop statistical tools that are reliable in the interconnected environment of
the cell. Finally, while some principles widely used in network medicine are well
documented (like the local hypothesis, Box 3), others like the parsimony principle, or the
expected overlap between topological, functional, and disease modules, remain to be
quantified and validated.

As helpful as analogies can be, we must realize that there is a fundamental difference
between the automotive technician and the physician: the technician can swap the broken
component with one that functions correctly. This is a futuristic view of medicine—most
drugs do not cure, but only alter the symptoms and signs of the disease. It is also clear,
however, that only an integrated understanding of the interactions among the genome, the
proteome, the environment, and the pathophenome, mediated by the underlying cellular
network, offers a basis for future advances. This perspective has led to a “think globally-act
locally” paradigm, fueling advances in network medicine: in order to generate the local
network perturbations that may cure a particular disease, we cannot avoid understanding the
cells’ global organization.

BOX 1: Biological Network Maps and Interaction Resources
While the bulk of research on biological networks has focused on E. coli and S.
cerevisiae, following the human genome project, the amount of data pertaining to
networks in the human cells exceeds in richness and diversity the data available for
model organisms. In the following, we briefly discuss the most studied network maps and
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their limitations, but remind the reader to exercise caution as we are describing a rapidly
changing landscape. The links and references to pertinent databases are available online.

Protein-protein interaction networks: In the past five years, significant efforts have been
made towards obtaining comprehensive protein interaction maps. High-throughput yeast-
two-hybrid maps for humans have been generated by several groups2, 8, 9 yielding over
7,000 binary interactions. The immunoprecipitation and high-throughput mass-
spectrometry technique, which identifies co-complexes, has begun to be applied as well
to humans93. There have also been major efforts to curate the interactions individually
validated in the literature into databases94, such as the Münich Information Center for
Protein Sequence (MIPS) protein interaction database, the Biomolecular Interaction
Network Database (BIND), the Database of Interacting Proteins (DIP), the Molecular
Interaction database (MINT), and the protein Interaction database (IntAct). More recent
protein-protein interaction curation efforts, the Biological General Repository for
Interaction Datasets (BioGRID), and the Human Protein Reference Database (HPRD)
have attempted larger-scale curation of data. Despite these extensive curation efforts, the
existing maps are considered incomplete2, and the literature-based datasets, while richer
in interactions, are prone to investigative biases21, containing more interactions for the
more explored disease proteins36.

Metabolic networks: The metabolic network maps are likely the most comprehensive of
all biological networks. Databases such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and the Biochemical Genetic and Genomics knowledgebase (BIGG)
contain the metabolic network of a wide range of species. Recently, Duarte et al.12

published a comprehensive literature-based genome-scale metabolic reconstruction of
human metabolism with 2,766 metabolites and 3,311 metabolic and transport reactions.
An independent manual construction by Ma et al.95 contains nearly 3,000 metabolic
reactions, organized into about 70 human-specific metabolic pathways.

Regulatory networks: Mapping of the human regulatory network is in its infancy, making
this network perhaps the most incomplete among all biological networks. Data generated
by experimental techniques, such as ChIP-on-chip and ChIP-Sequencing, have started to
be collected in databases such as Universal Protein Binding Microarray Resource for
Oligonucleotide Binding Evaluation (UniPROBE) and JASPAR. Literature-curated and
predicted protein-DNA interactions have been compiled in various databases, such as
TRANSFAC and the B-cell interactome (BCI). Human post-translational modifications
can be found in databases such as Phospho.ELM, PhosphoSite, and phosphorylation site
database (PHOSIDA).

RNA networks: RNA networks can refer to networks containing RNA-RNA or RNA-
DNA interactions. Recently, with the increased understanding of microRNAs’ role in
disease68, microRNA-gene networks have been constructed using predicted microRNA
targets available in databases such as TargetScan, PicTar, microRNA, miRBase, and
miRDB. The number of experimentally supported targets is also increasing, which are
now compiled in databases such as TarBase and miRecords.

BOX2: Elements of network theory
An important realization of the past decade is that networks appearing in natural,
technological, and social systems are not random, but follow a series of basic organizing
principles in their structure and evolution that distinguish them from randomly linked
networks. In the following, we summarize the aspects of network theory that pertain to
biological networks. For a more detailed exposition see Refs.22–27.While these principles
were found to apply to a wide variety of networks, in the context of this review, they
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refer to biological networks, seen as nodes (e.g., proteins, metabolites, diseases)
connected by links (e.g., protein-protein interactions, metabolic reactions, or shared
genes) as discussed throughout the review.

Degree distribution and hubs: In a random network, most nodes have approximately the
same number of links, and highly connected nodes (hubs) are quite rare. The fraction of
links with a given degree, called the degree distribution, follows the well-known Poisson
distribution. In contrast, many real networks, including human protein-protein interaction
and metabolic networks are scale-free96, which means that the degree distribution has a
power-law tail, i.e., the degree distribution P(k) with degree k follows P(k) ~ k−γ, where γ
is called the degree exponent. The most noticeable consequence of this property is the
presence of a few highly connected hubs that hold the whole network together29. The
biological role and dynamical behavior of hubs allowed their classification into “party”
hubs, which function inside modules and coordinate specific cellular processes, and
“date” hubs, which link together rather different processes and organize the
interactome45, 97.

Small world phenomena: Most complex networks (including random networks) display
the small world property, which means that there are relatively short paths between any
pair of nodes98. This observation means that most proteins (or metabolites) are only a
few interactions (or reactions) from any other proteins (metabolites)10, 11, 29. Therefore,
perturbing the state of a given node can affect the activity of most nodes in their vicinity
as well as of the behavior of the network itself.

Motifs: Some subgraphs (a group of nodes that link to each other forming a small
subnetwork within a network) in biological networks appear more (or less) frequently
than expected given the network’s degree distribution. Such subgraphs are often called
motifs99, and they are likely associated with some optimized biological function (e.g.,
negative feedback loop, positive feed forward loop, bifan, oscillator).

Modules: Most networks display a high degree of clustering, implying the existence of
topological modules, representing highly interlinked local regions in the network. While
the identification of such modules can be computationally challenging, a wide array of
network clustering tools have emerged in the past few years40–43.

Betweenness centrality: Nodes with a high betweenness centrality (a measure of the
number of shortest paths that go through each node) are often called bottlenecks. In
networks with directed edges such as regulatory networks, bottlenecks tend to correlate
with essentiality100.

BOX 3: Hypotheses of Network Medicine
Network medicine is based on a series of widely used (and often unspoken) hypotheses
and organizing principles that link network structure to biological function and disease.
Next, we summarize some of the most frequently utilized hypotheses, their use being
discussed in more detail in the main text.

Hubs: Non-essential disease genes (representing the majority of all known disease
genes) tend to avoid hubs and segregate at the functional periphery of the
interactome. In utero essential genes tend to associated with hubs.

Local hypothesis: Proteins involved in the same disease have an increased tendency
to interact with each other.

Corollary of the local hypothesis: Mutations in interacting proteins often lead to
similar disease phenotypes.
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Disease module hypothesis: Cellular components associated with a specific disease
phenotype show a tendency to cluster in the same network neighborhood.

Network parsimony principle: Causal molecular pathways often coincide with the
shortest molecular paths between known disease-associated components.

Shared components hypothesis: Diseases that share disease-associated cellular
components (genes, proteins, metabolites, miRNAs) show phenotypic similarity and
comorbidity.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Disease and essential genes in the interactome
(a) Of the approximately 25,000 genes, only about 1,700 have been associated with specific
diseases. In addition, about 1,600 genes are known to be in utero essential, i.e., their absence
is associated with embryonic lethality. (b) Schematic illustration of the differences between
essential and non-essential disease genes. Non-essential disease genes (illustrated as blue
nodes) are found to segregate at the network periphery whereas in utero essential genes
(illustrated as red nodes) tend to be at the functional center (encode hubs, expressed in many
tissues) of the interactome.
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Figure 2. Disease modules
Schematic illustration of the three modularity concepts discussed in the review. (a)
Topological modules correspond to locally dense neighborhoods of the interactome, such
that the nodes of the module show a higher tendency to interact with each other than with
nodes outside of the module. As such, topological modules represent a pure network
property. (b) Functional modules correspond to network neighborhoods in which there is a
statistically significant segregation of nodes of related function. A functional module, thus,
requires us to define some nodal characteristics (illustrated as gray nodes), and relies on the
hypothesis that nodes involved in closely related cellular functions tend to interact with each
other and thus are located in the same network neighborhood. (c) A disease module
represents a group of nodes whose perturbation (mutations, deletions, copy number
variations, or expression changes) can be linked to a particular disease phenotype, shown as
red nodes. The tacit assumption in network medicine is that the topological, functional, and
disease modules overlap so that functional modules correspond to topological modules and a
disease can be viewed as the breakdown of a functional module.
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Figure 3. Identifying and validating disease modules
A network-based approach to a particular diseases consist of several steps:

i. Interactome reconstruction, which merges the most up-to-date information on
protein-protein interactions, co-complex memberships, regulatory interactions, and
metabolic network maps (Box 1) in the tissue and cell line of interest. These
networks are occasionally augmented with phenotypic links, such as coexpression-
based relationships, but such phenotypic measures are best utilized later to test the
functional homogeneity of the predicted disease module.

ii. Disease gene (seed) identification, collects the known disease-associated genes
obtained from linkage analysis, GWAS, or other sources, serving as the seed of the
disease module.

iii. Disease module identification. The seed genes are placed on the interactome,
aiming to identify a subnetwork that contains most of the disease-associated
components, exploiting both the functional and topological modularity of the
network. If such statistically significant agglomeration is detected, then one can use
a combination of clustering tools40–43 to identify the functionally and topologically
compact subgraph that contains most disease components, representing the
potential disease module. The closer the phenotypic manifestations are of the two
diseases (organ, symptoms, drug response), the more significant is the expected
overlap between the modules associated with two diseases.

iv. Pathway identification: Occasionally, the number of components the ascertained
disease module contains is so large that it cannot serve as a tractable starting point
for further experimental work. In this case it may be necessary to identify the
specific molecular pathways whose disruption may be responsible for the disease
phenotype. One typically uses the network parsimony principle (Box 3) to select
the most likely disease pathways, assuming that causal pathways are the shortest
paths connecting the known disease components.

v. Validation/prediction: The disease modules are tested for their functional and
dynamic homogeneity. The nature of the validation depends on the tools and data
available to the investigator; gene expression data can validate the dynamical
integrity of the disease module, and GWAS can be used to test the potential links
between the SNPs of the predicted cellular components and the disease phenotype.
Finally, the predicted disease genes and pathways (serving also as potential drug
targets) are tested using the available molecular biology tools and animal models.
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Figure 4. identifying disease gene candidates
(i) Linkage methods. Genes located within the linkage interval of a disease whose protein
products interact with a known disease-associated protein are considered likely candidate
disease genes38, 59. (ii) Clustering methods. Clustering or graph partitioning helps us
uncover functional and potential disease modules in the interactome. The members of such
modules are considered candidate disease genes59, 61. (iii) Diffusion-based methods:
Starting from proteins known to be associated with a disease, a random walker (or a
propagator) visits each node in the interactome with a certain probability62, 63. The outcome
of the algorithm is a disease-association score assigned to each protein, the likelihood that a
particular protein is associated with the disease.
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Figure 5. Disease networks
(a) Human Disease Network, whose nodes are diseases; two diseases being linked if they
share one or several disease-associated genes, as shown in the example involving breast
cancer and bone and cartilage cancer64. The large panel shows the giant cluster of the
obtained disease network. Not shown are small clusters of isolated diseases37. Node color
reflects the disease class of the corresponding diseases to which they belong, cancers
appearing as blue nodes and neurological diseases as red nodes. Node size correlates with
the number of genes known to be associated with the corresponding disease (after ref.37).
The left panel shows the comorbidity between diseases linked in the HDN measured by the
logarithm of relative risk, indicating that if the disease-causing mutations affect the same
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module of the shared disease protein, then the comorbidity is higher64. (b) Metabolic
Disease Network, linking two diseases if they are both associated with enzymes and if these
enzymes catalyze reactions that share a metabolite (after ref.67). The comorbidity between
metabolically linked diseases is higher than those that are not connected, and diseases whose
enzymes catalyze reactions that are coupled with each other at the flux level show even
higher comorbidity (bottom left panel).
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